EQUILIBRIUM

DEFINITION OF EQUILIBRIUM

When a system of forces acting on a body has no resultant, the body in which the force system acts is in equilibrium. So, equilibrium means that both the resultant force and the resultant couple are zero.

Newton's first law of motion states that if the resultant force acting on a particle is zero, the particle will remain at rest or move with constant velocity. The conditions for equilibrium in two dimensions are:

$$
\begin{align*}
& \Sigma F_{x}=0, \tag{3-1a}\\
& \Sigma F_{y}=0, \tag{3-1b}\\
& \Sigma M_{O}=0 \tag{3-1c}
\end{align*}
$$

The summations in Eqs. (3.1) must, of course, include all the forces that act on the body (both the applied forces and the reactions (the forces provided
 by supports)).

FREE-BODY DIAGRAM

The free-body diagram (FBD) of a body is a sketch of the body, a portion of a body, or two or more bodies completely isolated or free from all bodies, showing all forces that act on it.

Forces that act on a body can be divided into two general categories:

- Reactions are those forces that are exerted on a body by the supports to which it is attached.
- Applied forces are those forces acting on a body that are not provided by the supports.

The following is the general procedure for constructing a free-body diagram.

1. A sketch of the body is drawn assuming that all supports (surfaces of contact, supporting cables, etc.) have been removed.
2. All applied forces are drawn and labeled on the sketch. The weight of the body is considered to be applied force acting at the center of gravity. The center of gravity of a homogeneous body coincides with the centroid of its volume.
3. The support reactions are drawn and labeled on the sketch. If the sense of a reaction is unknown, it should be assumed. The solution will determine the correct sense: A positive result indicates that the assumed sense is correct, whereas a negative result means that the correct sense is opposite to the assumed sense.
4. All relevant angles and dimensions are shown on the sketch.

Typical examples of actual supports are shown in the following sequence of photos.

The cable exerts a force on the bracket in the direction of the cable.

This concrete girder rests on the ledge that is assumed to act as a smooth contacting surface.

The rocker support for this bridge girder allows horizontal movement so the bridge is free to expand and contract due to a change in temperature.

This utility building is pin supported at the top of the column.

The floor beams of this building are welded together and thus form fixed connections.

MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS	
Type of Contact and Force Origin	Action on Body to Be Isolated
1. Flexible cable, belt, chain, or rope Weight of cable negligible	Force exerted by a flexible cable is always a tension away
2. Smooth surfaces	 Contact force is compressive and is normal to the surface.
3. Rough surfaces	Rough surfaces are capable of supporting a tangential component F (frictional force) as well as a normal component N of the resultant contact force R.
4. Roller support	Roller, rocker, or ball support transmits a compressive force normal to the supporting surface.
5. Freely sliding guide	Collar or slider free to move along smooth guides; can support force normal to guide only.
6. Pin connection	Pin A freely hinged pin connection is capable of supporting a force in any direction in the fo turn
7. Built-in or fixed support or	A built-in or fixed support is capable of supporting an axial force F, a transverse force V (shear force), and a couple M (bending moment) to prevent rotation.
8. Gravitational attraction	$W=$The resultant of gravitational attraction on all elements of a body of mass m is the weight $W=m g$ and acts toward the center of the earth through the center mass G.

Mechanical System

1. Plane truss
Weight of truss
assumed negligible
compared with P

GENERAL CASE

It often is convenient to use a set of three independent equations different from those in Eqs. (3.1). The alternative equations are described next.

1. Two force equations and one moment equation: The x - and y directions in Eqs. (3.1) do not have to be mutually perpendicular-as long as they are not parallel. Hence, the equilibrium equations can be restated as

$$
\Sigma F_{x}=0 \quad \Sigma F_{y}=0 \quad \Sigma M_{O}=0
$$

where x and y are any two non-parallel directions and O is an arbitrary point.
2. Two moment equations and one force equation: It is possible to replace one of the force equations in Eqs. (3.2) by a moment equation, obtaining

$$
\begin{equation*}
\Sigma F_{x}=0 \quad \Sigma M_{\mathrm{A}}=0 \quad \Sigma M_{B}=0 \tag{3.3}
\end{equation*}
$$

Here, A and B are any two distinct points, and x is any direction that is not perpendicular to the line $A B$. Note that if $\Sigma M_{A}=0$ and $\Sigma M_{B}=0$ are satisfied, the resultant only can be a force R that lies along the line $A B$, as shown in Figure. The equation $\Sigma F_{x}=0$ (x not perpendicular to
 $A B$) then can be satisfied only if $R=0$.
3. Three moment equations: We also can replace both force equations in Eqs. (3.2) by two moment equations. The result is

$$
\begin{equation*}
\Sigma M_{\mathrm{A}}=0 \quad \Sigma M_{B}=0 \quad \Sigma M_{C}=0 \tag{3.4}
\end{equation*}
$$

where A, B, and C are any three distinct, non-collinear points, as indicated in Figure above. Again the equations $\Sigma M_{A}=0$ and $\Sigma M_{B}=0$ are satisfied only if the resultant is a force R that lies along the line $A B$. The third equation $\Sigma M_{C}=0$ (C not on the line $A B$) then guarantees that $R=0$.

